A sensitive enzymeless hydrogen-peroxide sensor based on epitaxially-grown Fe3O4 thin film.
نویسندگان
چکیده
A novel and facile approach has been developed to synthesize thin films of magnetite (Fe(3)O(4)) with epitaxial needle-like columnar grains on titanium nitride (TiN) buffered substrate using DC magnetron reactive sputtering. TiN buffer layer was first sputtered onto a substrate at 550 °C as a preferable substrate for growth following sputtering of epitaxial crystalline Fe(3)O(4) at 300 °C. The as-synthesized epitaxial Fe(3)O(4) was extensively characterized. The electrocatalytic activity of the epitaxial Fe(3)O(4) thin-film sensor against hydrogen peroxide (H(2)O(2)) reduction was rapid with a response time less than 5 s. The sensor also exhibited an acceptable stability, a satisfying sensitivity of 432.2 μA mM(-1) cm(-2), good specificity to the substrate, a dynamic working range of up to 0.7 mM and a low detection limit of 1.0 μM. The sensor performance correlated well (R(2)=0.996) with results obtained using a commercial HPLC-UV device. The sensor performance was robust and accurate in measuring H(2)O(2) in some complex matrices. The advantages of relative simplicity and ease of mass production make the epitaxial Fe(3)O(4) thin film promising candidate for use in sensing applications.
منابع مشابه
Simple and Sensitive Electrochemical Sensor-Based Three-Dimensional Porous Ni-Hemoglobin Composite Electrode
The development of sensing systems that can detect ultra-trace amounts of hydrogen peroxide (H2O2) remains a key challenge in biological and biomedical fields. In the present study, we introduce a simple and highly sensitive enzymeless H2O2 biosensor based on a three-dimensional open pore nickel (Ni) foam electrode functionalized with hemoglobin (Hb). Our findings revealed that the Hb maintaine...
متن کاملNanopillar films with polyoxometalate-doped polyaniline for electrochemical detection of hydrogen peroxide.
Design and fabrication of electrodes is key in the development of electrochemical sensors with superior electrochemical performances. Herein, an enzymeless electrochemical sensor is developed for detection of hydrogen peroxide based on the use of highly ordered polyoxometalate (POM)-doped polyaniline (PANI) nanopillar films. The electrodeposition technique enables the entrapment of POMs into PA...
متن کاملEpitaxial growth of highly-crystalline spinel ferrite thin films on perovskite substrates for all-oxide devices
The potential growth modes for epitaxial growth of Fe3O4 on SrTiO3 (001) are investigated through control of the energetics of the pulsed-laser deposition growth process (via substrate temperature and laser fluence). We find that Fe3O4 grows epitaxially in three distinct growth modes: 2D-like, island, and 3D-to-2D, the last of which is characterized by films that begin growth in an island growt...
متن کاملLow temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor
In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...
متن کاملLow temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor
In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytica chimica acta
دوره 708 1-2 شماره
صفحات -
تاریخ انتشار 2011